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3D Shape Synthesis

Templated-based model
• Synthesizing realistic shapes

• Requiring a large shape repository

• Recombining parts and pieces
Image credit: [Huang et al., SGP 2015]



3D Shape Synthesis

Image credit: 3D ShapeNet
[Wu et al., CVPR 2015]

Voxel-based deep generative model
• Synthesizing new shapes

• Hard to scale up to high resolution

• Resulting in not-as-realistic shapes



3D Shape Synthesis

Realistic + New

Realistic New



Adversarial Learning

Generative adversarial networks
[Goodfellow et al., NIPS 2014]

DCGAN [Radford et al., ICLR 2016]



Our Synthesized 3D Shapes
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3D Generative Adversarial Network
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Training on ShapeNet [Chang et al., 2015]
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Generator Structure

Latent
vector

G(z) in 3D Voxel Space
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Randomly Sampled Shapes

Chairs Sofas

Results from 3D ShapeNet



Randomly Sampled Shapes
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Results from 3D ShapeNet



Interpolation in Latent Space
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Unsupervised 3D Shape Descriptors
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3D Shape Classification

Shape Discriminator

Real?

Extracted Mid-level
Features

Linear SVM Chair



Supervision Pretraining Method
Classification (Accuracy)

ModelNet40 ModelNet10

Category labels

ImageNet
MVCNN [Su et al., 2015] 90.1% -
MVCNN-MultiRes [Qi et al., 2016] 91.4% -

None

3D ShapeNets [Wu et al., 2015] 77.3% 83.5%
DeepPano [Shi et al., 2015] 77.6% 85.5%
VoxNet [Maturana and Scherer, 2015] 83.0% 92.0%
ORION [Sedaghat et al., 2016] - 93.8%

Unsupervised -

SPH [Kazhdan et al., 2003] 68.2% 79.8%
LFD [Chen et al., 2003] 75.5% 79.9%
T-L Network [Girdhar et al., 2016] 74.4% -
Vconv-DAE [Sharma et al., 2016] 75.5% 80.5%
3D-GAN (ours) 83.3% 91.0%

3D Shape Classification Results
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Limited Training Samples

Comparable with best unsupervisedly learned 
features with about 25 training samples/class 

Comparable with best voxel-based supervised 
descriptors with the entire training set



Discriminator Activations

Units respond to certain object shapes and their parts.



Extension: Single Image 3D Reconstruction



Model: 3D-VAE-GAN

Mapped latent
vector

Variational 
image encoder

Image
input

Reconstructed
shape

A variational image encoder maps an image to a latent vector for 3D object reconstruction.
VAE-GAN [Larson et al., ICML 2016], TL-Network [Girdhar et al., ECCV 2016]

Generator



Model: 3D-VAE-GAN
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shape
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We combine the encoder with 3D-GAN for reconstruction and generation.
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Single Image 3D Reconstruction



Single Image 3D Reconstruction

Bed Bookcase Chair Desk Sofa Table Mean
AlexNet-fc8 [Girdhar et al., 2016] 29.5 17.3 20.4 19.7 38.8 16.0 23.6
AlexNet-conv4 [Girdhar et al., 2016] 38.2 26.6 31.4 26.6 69.3 19.1 35.2
T-L Network [Girdhar et al., 2016] 56.3 30.2 32.9 25.8 71.7 23.3 40.0
Our 3D-VAE-GAN (jointly trained) 49.1 31.9 42.6 34.8 79.8 33.1 45.2
Our 3D-VAE-GAN (separately trained) 63.2 46.3 47.2 40.7 78.8 42.3 53.1

Average precision on IKEA dataset [Lim et al., ICCV 2013]



Contributions of 3D-GAN
• Synthesizing new and realistic 3D shapes via adversarial learning
• Exploring the latent shape space

• Extracting powerful shape descriptors for classification

• Extending 3D-GAN for single image 3D reconstruction


